
What is the DataViews Plug-In?
The DataViews Netscape Navigator Plug-In is a Web extension to DataViews that lets you display and
animate DataViews views in a web browser. With this capability, you can access real-time data from
anywhere you use Netscape Navigator. You can use the same views you created for your DataViews
applications simply by saving them in ASCII with a different extension. You can also establish links to
other views or web pages simply by using a URL specification in your object names.
To invoke the DataViews Plug-In, you can display a view directly in your browser or display a web page
that contains a reference to a view. When the Plug-In is active, you see the view and can use input
objects, jump to other views, or display other web pages by clicking on objects in the view. When the
view is contained within a web page, you have control over the size of the rectangle containing the
view, you can activate the dynamics in the view, and you can set up a data connection through CGI
scripts.
User interaction can be handled directly by the view (through input objects) or through three types of
CGI (Common Gateway Interface) scripts on the server. These types are:

· data source scripts
· data initialization scripts
· data sink scripts

Data source scripts act as a live data feed to a Plug-In instance. Data initialization scripts initialize the
Plug-In instance by feeding data to it before the view is displayed. Data sink scripts let you react to
user input such as button clicks or mouse movement. Using these CGI scripts, you can program a web
session much as you program a DV-Tools application.
To use the Plug-In, all you have to do is:

· Install the Plug-In.
· Save your DataViews Views in ASCII with an appropriate file extension.
· Register the DataViews MIME type with your web server.
· Provide a data source script, if desired.
· Provide a data initialization script, if desired.
· Provide a data sink script, if desired.
· Embed the view in an HTML page or display it directly in the web browser.

This document describes all of these steps.

Requirements
To run the DataViews Plug-In, you must have the following components:

· DataView 9.8
· Netscape Navigator 3.0 or higher

Installing the Plug-In
The Plug-In is installed when you install DataViews 9.8 unless you do a custom installation and elect
not to install it.
If you did not install the Plug-In when you installed the rest of the DataViews product, you can install
the Plug-In separately by re-running the DataViews Setup Program.
To verify that the Plug-In is installed, run Netscape and select About Plug-Ins from the Help menu. The
Plug-In list should include the following information: DataViews 9.8 for Windows Netscape Plug-In v
1.0.

Using the Plug-In
The Plug-In displays your DataViews views in a client-server relationship. The client is your web
browser. This can be located on any machine that has access to the Internet or your local Intranet. The
server is where your CGI data source, data initialization, and data sink scripts are located. Text file data
source and data initialization scripts as well as views can be located on any convenient machine. This
relationship lets you monitor real-time data from almost anywhere.
The following figure illustrates this relationship:

Figure 1: Relationship Between DataViews Web Components

Building DataViews Views
You build a view with DV-Draw. You can display any DataViews view using the Plug-In. All you need to
do is:

· Save the view in ASCII mode instead of Binary.
Using ASCII view files is critical in a cross-platform environment. Web servers run on
many platforms, as does Netscape Navigator.

You can set the DV-Draw save mode by choosing View->preferences, then clicking the
ASCII button in the save mode area. You can also use the utility viewconv, located in the
<DVHOME>\bin directory, to convert views from binary to ASCII representation.

· Save the view with a .dvv or .dvweb extension.
The Plug-In registers .dvv and .dvweb to the DataViews MIME type. If the view is on a
local file system (not on a web server) these extensions are the only way to invoke the
Plug-In. In this case, displaying a view with any other extension simply shows the ASCII
representation of the view in the browser window.

This restriction applies only to the top-level views. Referenced views can have any
extension.

There is no difference between the .dvv and .dvweb extensions. Both are registered to
and invoke the Plug-In.

If the view is located on a web server, the server can be configured so that a top-level
view with any extension, including .v, starts the Plug-In. See the Registering the
DataViews MIME Type with your Web Server section, later in this manual.

Creating Web Links to Other Views, Web Pages, or Graphics Files
The name of an object can be used to establish a link to other views, .gif files or web pages by
formatting it as a URL. Clicking on the object traverses the link to the designated URL which is then
displayed by Netscape. The format for the object name that makes it act like a link when displayed by
the Plug-In is:
<href="referenced_file">
where referenced_file is either a valid web address that starts with http:// or a file in the local directory
hierarchy:
<href="test.dvv"> local file
<href="cool.gif"> local file
<href ="http://www.dvcorp.com"> web server reference
<href="http://www.dvcorp.com/mp/dv/
DataViews.html>

web server reference

The DV-Draw User’s Guide gives complete instructions for creating views. This document assumes
you know how to build a view using the default data source, memory variables, and input objects. If
any of these terms is unfamiliar to you, please see the relevant sections in the DV-Draw User’s Guide.

Registering the DataViews MIME Type with Your Web Server
Before you can display DataViews views with the Plug-In, you must set your web server to recognize
that it is sending a view to a client browser. While your server already recognizes such file types as:
.gif, .jpeg, and .html, you have to add the DataViews view type to the server setup. The server
recognizes files types by their extension. Each extension is associated with a corresponding MIME
type. A MIME type is a textual representation of the type of information that is being sent to or from a
web server. For example, the MIME type for .gif files is image/gif, for .jpeg files is image/jpeg and for
.html files is text/html. You can associate more than one file extension with the same MIME type. This
association is usually made in a configuration file on the server.
The MIME type for DataViews views is:
text/x-dvweb

You can set up your web server to associate text/x-dvweb with file extensions such as .dvv, .dvweb
and .v. Consult your Web Server documentation to determine how to set up these associations.
Appendix C: Setup for Common Web Servers also contains setup instructions for some of the more
common Web Servers.
After you do this, files with names such as myview.dvv, myview.dvweb, and myview.v that are located
on a web server all generate the correct HTML header, which gets sent to the browser. The browser,
which is set up to load the DataViews Plug-In for a MIME type of text/x-dvweb, starts a Plug-In instance
for each of these files. A header supplied by a web server supersedes the need for the browser to
check the file's extension. Therefore, your web server can overrule the Plug-In's file extension
requirements of .dvv or .dvweb. The Plug-In never checks the file extension when a MIME header is
supplied.

Loading a View Directly into the Browser
The quickest way to display a view with the Plug-In is to load the view directly as a file.
Select File..Open File in Netscape Navigator or File..Open File in Browser in Nestcape Navigator Gold.
Browse to the correct directory and double click on the name of the DataViews view file that you'd like
to see. Remember that the view file must have a .dvv or .dvweb file extension.
You should now see the view in the browser window:

Loading a view this way is mainly good for testing that your setup works. Notice that it is stretched to fit
the entire area of the browser so objects may be distorted. You have no control over the height and
width of the display area for the view. Input objects are active, but you cannot start a built-in data
source. Also, you cannot use many of the advanced Plug-In features such as using a web server
based data source or programmable reaction to user feedback.
If you have trouble displaying views in your browser, see Appendix B: Troubleshooting/ FAQ .

Embedding a View in a Web Document
To control the size of the rectangle in which the Plug-In is displayed, to connect data to the Plug-In, and
to use other HTML along with the Plug-In, you embed the Plug-In in a Hypertext Markup Language
(HTML) document.
To display an embedded view, you use the HTML <EMBED> command. <EMBED> has various
attributes that you set to let the browser know what is being embedded and how it should appear. Here
is an example of an <EMBED> command that displays a DataViews view:
<EMBED SRC="http://ithica/dyntest.dvweb"
WIDTH=600 HEIGHT=600
NAME=MY OBJECT>
This command uses the SRC, WIDTH, and HEIGHT attributes. These attributes are part of the
standard set of attributes for any embedded object. The attribute NAME is specific to the DataViews
Plug-In.
The SRC attribute specifies the top-level view to load into the Plug-In. The WIDTH and HEIGHT
attributes control the width and height of the rectangle displaying your view. The NAME attribute
assigns a name to the Plug-In instance so that a server program can send commands specifically to
that instance. Sending commands to the Plug-In is discussed in the Using Live Data: The External
Data Source section and the Using Live Data- Interactions with the User via the Data Sink section. You
can also add other HTML tags besides <EMBED> before and after the view.
The following example shows an HTML document with an embedded view. Note that several HTML
tags are used in addition to the <EMBED> command:

<HTML><HEAD><TITLE>My Home Page</TITLE></HEAD>
<BODY>
<H1>Embedded view in HTML document</H1>
<center><p>This is an example of a DataViews view embedded in a web page. Note
that you can use any HTML tags, not just the <EMBED> tag.</p>
<EMBED SRC="http://ithica/dyntest.dvweb"
WIDTH=600 HEIGHT=600
NAME=MY OBJECT></center>
</Body></HTML>

This file, saved as home.htm and loaded into the web browser, looks like this:

Additional attributes are available for the DataViews Plug-In. These let you further customize the
representation of the Plug-In in the browser. Some of these other attributes are discussed later in this
document. The full set of attributes is contained in Appendix A: DataViews PlugIn Attributes .

Animating the View
If you have set up your view with a data source, you can animate the view on the web easily. You use
two <EMBED> attributes that are specific to the DataViews Plug-In. These are AUTOREADDATA and
OPENDATASOURCES:

· AUTOREADDATA
If set to TRUE, every time the Plug-In automatically updates, it also performs a
TviReadData(). The default is FALSE. Typically, this is only important if the view uses file
or function data sources.

· OPENDATASOURCES
If set to TRUE, view data sources are opened before the initial draw. The default is
FALSE. Typically, this is only important if the view uses file, function, or constant data
sources.

This is an example of the <EMBED> code you need to animate a view with a data source:
<EMBED
SRC="http://ithica/dyntest.dvweb"
AUTOREADDATA=TRUE
OPENDATASOURCES=TRUE
WIDTH=600 HEIGHT=600
NAME=MY OBJECT
>

When you load an HTML file with this <EMBED> code, the Plug-In displays the dyntest.dvweb view,
animated by its internal data source.
In later sections, we discuss other <EMBED> attributes and more advanced procedures such as
attaching a server-based data source to your view and attaching a server-based data sink to your view.
These procedures allow your view to react to user interaction.
The rest of this document explains the DataViews Plug-In Client/Server model, how to embed
references to DataViews views in an HTML document, how to establish and hook up an external data
source to the view, and how to react to user input.

Using Input Objects
One way to simulate live data is to use Input Objects in your view. Attach the input object to a memory
variable that controls one or more dynamics on an object.
When you display the view in the web browser, you can use the input object to change the memory
variable. If the memory variable is attached to a line's rotation dynamics, for example, changing the
input object rotates the line. Here, the <EMBED> command does not need the OPENDATASOURCES
and AUTOREADDATA commands because we are not relying on the default file data source.

Figure 1: Relationship Between DataViews Web Components

The DataViews PlugIn Client/Server Model
In this section, we replace the input object mentioned in the previous section with a live data source on
the web server. The data source sends commands to the Plug-In to change the memory variable
attached to the line's rotation dynamics.
The previous examples do not discuss the web server, the data source script, the data initialization
script, and the data sink scripts that appear in Figure 1 . This is because the previous examples were
fairly simple. For example, when you point your browser directly to a view file, that file can be located
on a web server or on your local machine. The same is true when you embed a view in a web
document but do not attach an external data source or data sink. In either of these cases, you do not
get any "extra" benefit from using the server besides the ability to look at a view located on some other
machine.
The real power of the Plug-In is that it allows you to serve data to a view and react to user interaction
across the Internet or your local Intranet. This power is derived from small "glue" programs called
Common Gateway Interface (CGI) scripts located on a web server, such as the data source, data
initialization, and data sink scripts mentioned earlier.
In this model, the web document may or may not be located on a web server. The view may or may not
be located on a web server. If the data source or data initalization script are plain text files, they can be
located anywhere However, CGI scripts (data source, data initialization, or data sink) must be located
on the web server.
When you start a Plug-In instance, the following events occur:

1. If a DATAINIT attribute is defined, the Plug-In runs that program before it displays the view.
The DATAINIT program sends commands to the Plug-In to initialize the view. The DATAINIT
is run once at the start of a Plug-In instance and must exit before anything else happens.

2. The view is displayed.
3. If a DATASOURCE attribute is defined, the Plug-In starts the DATASOURCE. This program

runs constantly, sending commands to the view until the Plug-In instance is destroyed.
4. If a DATASINK attribute is defined, query strings are sent to it when the user interacts with

something in the view. A query string is a text string that defines the user interaction. The
DATASINK responds to the query string with commands sent to the view. The DATASINK
program is started each time a user interacts with the view. The DATASINK program must
return commands then exit before anything else happens.

Before you can attach a data source CGI program to your view and react to user input with a data sink
CGI program, you need to be sure that your web server is set up to handle the DataViews Plug-In. See
the Registering the DataViews MIME Type with Your Web Server section earlier in this document.

Using Live Data: The External Data Source
In this section, we discuss how to feed real-time data to your views from a web server. If you have
programmed external data sources for DV-Tools applications, this process should be familiar to you.
You should know how to use a scripting or batch language to create an external data source and you
must have permission to access your web server.
An external data source is an executable program or a text file that feeds commands to your view
through the Plug-In. These commands are text-based and are fed to the Plug-In through stdout by your
web server.
The Plug-In attribute DATASOURCE connects your data source CGI script or text file to your view. The
An Example Web Page section, later in this document, contains an example of using the
DATASOURCE attribute.
The following commands can be used by the DATASOURCE, DATAINIT, and DATASINK scripts (The
DATAINIT and DATASINK attributes are discussed later in this document):

· alias name value
This command sets an alias name for the long string value. You use an alias by putting
an '@' in front of the name:

The following example commands to a Plug-In instance set up aliases:

 alias s1 set_value default.mem/var:1 f 1.0
 alias s set_value default.mem/var:1 f

The Plug-In instance can then use these aliases to send much shorter commands. The
following lines:

 @s1
 @s 2.0

are interpreted as:

 set_value default.mem/var:1 f 1.0
 set_value default.mem/var:1 f 2.0

Each Plug-In instance maintains its own list of aliases.

· draw_next
This causes a TdpDrawNext() to occur on the view.

· pause
This makes the Plug-In suspend periodic updating of the display until a resume command
is received. If large amounts of data are coming across the net, you can use pause and
resume to keep the graphics from updating until all the data has been received.

pause has no effect when periodic updating is off. To start periodic updating, send the
period command to the Plug-In with a non-zero period (see the period explanation
below).

· period milliseconds
Sets the period of automatic updating, measured in milliseconds. If milliseconds is 0, the
Plug-In no longer automatically updates.

· resume
Resumes periodic updating using the previous period. See pause.

· set_value ds/dsv value

Sets the named view data source variable to the given value. ds/dsv stands for
<datasource_name>/<datasource_variable_name>.

· tell name command
Directs a command to a particular named Plug-In instance. For example,

 tell IndexView set_value default.dat/Var:1 f 1.0

sets the default data source variable in the top-level view contained in the IndexView
Plug-In instance to 1.0.

· update
Causes a TviReadData() to occur, updating any history buffers in the view. See the DV-
Tools Reference Manual for a complete explanation of TviReadData().

Abbreviating Commands
You can abbreviate all of the commands to one or more initial letters except period, which requires at
least "pe" to differentiate it from pause.

An Example Web Page
The following example shows a web page that uses a data source with a view:
<HTML>
<H1> DataViews Sample Plug-In </H1>
<HR>
<p><center>
<EMBED SRC="http://Ithica/dynamics.dvweb"
SERVERPATH="views"
DATASOURCE=http://Ithica/dyn_data.x
TYPE="text/x-dvweb"
ALWAYSREQUESTFILE=TRUE
WIDTH=600
HEIGHT=600
NAME="MY OBJECT">
<HR></HTML>

Three new attributes are used in this example:
· SERVERPATH

This is a path to search on the server.

· ALWAYSREQUESTFILE
If set to TRUE, any embedded pixmap, subdrawing, and file data source files are always
requested from the server even if a local copy is available. If it is set to FALSE (the
default), and if the file was found locally (by using the ordinary DV-Tools search paths),
the local copy is used instead.

· TYPE
This is an attribute that is common to all <EMBED> objects. This lets you specify the
MIME type of the embedded object rather than letting the server send this information.

Sending PlugIn Commands across the Network
As stated earlier, Plug-In commands are sent via stdout to the Plug-In which acts on the view. But what
does this mean? How do the commands get to stdout and how does the Plug-In know about them and
know where to send them? We answer these questions in this section.
The first step to using an external data source is to set aside one or more memory variables in your
view for the live data. For details about setting up memory variables, see the DV-Draw User’s Guide.
The next step is to design your data source. This can be, as in the simplest case above, a text file with
a list of Plug-In commands. The <DVHOME>\plugin\exampes\sinwave\ directory contains an example
of a text file data source. In a more complex and useful case, it can be a CGI-BIN script written in any
language that can write to stdout. CGI-BIN scripts must be located on the web server.
In either case, you connect your data source to your view with the DATASOURCE attribute of the
<EMBED> command. For a discussion of the <EMBED> command, see Embedding a View in a Web
Document earlier in this document. The following example is a modified version of the example in the
An Example Web Page section:

<EMBED
SRC="http://Ithica/dyntest.dvweb"
AUTOREADDATA=FALSE
OPENDATASOURCES=FALSE
DATASOURCE=”http://Ithica/cgi-bin/dynsource.x”
WIDTH=600 HEIGHT=600 NAME="MY OBJECT"
>

Specifying the data source this way starts an instance of that data source on the web server. The data
source then feeds Plug-In commands to the view. In the case of a text file, these commands run out
after a period of time. With a script, you can program an infinite loop that constantly feeds data to your
view. You can use an infinite loop because the Plug-In starts the data source when the instance of the
Plug-In is created and destroys the data source when the user moves away from the web page
containing the DataViews view.
This is an example of a script written in the C language:

#include <math.h>
#include <stdio.h>

int main (argc, argv)
 int argc;
 char *argv[];
{
 float dial_input = 0.0, text_input = 0.0;
 float low_range_out = 170.0, high_range_out = -170.0;
 double low_range_in = -2.0, high_range_in = 2.0;
 int n;

 /* Necessary to indicate to Netscape type of docuement information */
 printf("Content-type: text/plain\n");
 printf("\n");
 /* Loop: change the dial input,text input and update the dynamic objects */
 n=0;
 for(;;)
 {
 if(n == 2000) n = 0;

 dial_input = sin ((double) (n / 15.0)) - cos ((double) (n / 25.0));

 /* Get a mapped output value for the angle */
 text_input = dial_input * (high_range_out - low_range_out) /
 (high_range_in - low_range_in);

 printf("set_value default.mem/dial_input f %f\n", dial_input);
 printf("set_value default.mem/text_input f %f\n", text_input);
 printf("draw_next\n");
 fflush(stdout);
 n++;
 sleep(.8);
 }
 return 0;
}

This program, when compiled, is called dyn_data.x. As the name implies, it supplies dynamic data to a
view. You can see that all communication with the view is done through STDOUT (printf statements)
and that the dynamic data is supplied through an infinite loop, (for (;;)).
In Note 1, you see a MIME header. In this case, it is text/plain. Recall that the plain text file example
also contained a header. MIME-type headers are important when communicating between a web
server and web client.
In the loop, some calculations are made, then Plug-In commands are generated and sent to STDOUT
by the code in Note 2. This code assumes two memory variables: dial_input and text_input. Note that
we flush the output buffer to be sure the commands are sent. Also, a pause is inserted so that the Plug-
In instance does not overwhelm the web browser with data updates.

The DATAINIT Attribute
The DATAINIT attribute acts much like the DATASOURCE attribute but with the following important
differences:

· The commands in DATAINIT are only read once, whereas commands in DATASOURCE can
be read periodically .

· The drawing is not displayed until after the DATAINIT stream completes. If there is no
DATAINIT attribute, the drawing is displayed before the DATASOURCE is started.

The DATAINIT can be a text file with Plug-In commands or a CGI program, just like the
DATASOURCE.
An advanced use of DATAINIT is to restore historical data to a Plug-In instance when a user goes
away then returns to a web page containing a DataViews view. When a user moves to a different web
page, the current Plug-In instance is destroyed. If that instance has a DATASINK attribute, then the
DATASINK program can recognize the destruction and create a new DATAINIT containing historical
data. Then, when the users goes back to the page, the view is passed historical data through the new
DATAINIT before the DATASOURCE is started. This lets it appear as if moving away from a page does
not affect the data being displayed.

Using Live Data- Interactions with the User Via the Data Sink
The DATASINK attribute specifies a CGI program that receives and responds to user input. The user
input is communicated to the CGI program via a query string generated by the Plug-In and sent to the
program through stdin. The query string includes the name, type, and values from the object with which
the user interacted. After parsing the query string to determine which object originated the input and
examining the values, the data sink CGI sends commands back to the sending Plug-In instance or to
other named instances to modify appearance and behavior.
The commands sent back to the Plug-In are the same as the ones used in the DATASOURCE and
DATAINIT programs. However, the DATASINK program is started each time the user interacts with a
view. The Plug-In then waits for command output from the DATASINK before updating the view.
Therefore, the function of the DATASINK is to receive commands, react to commands, and exit quickly.
This is different from the DATASOURCE command. The DATASOURCE is started only once, at Plug-In
instance creation, and is only killed when the instance is killed.
The following diagram illustrates the DATASINK's interaction with a view:

Figure 2: Data Flow When using a Data Sink
When a query string is created by the Plug-In, an environment variable, CONTENT_LENGTH, is loaded
with the length of the query string. Then the DATASINK is started and the query string is sent to the
DATASINK via stdin. The DATASINK must allocate a buffer based on the length of the incoming query
string then act on the information given.

The DATASINK is notified about two types of user interaction: a user click on a named object, or user
manipulation of a named input object. In addition, the DATASINK is notified when a Plug-In instance is
created and when it is destroyed. The &Callback line of the query string indicates the type of
notification the DATASINK receives:

&Callback=select The user clicks on an object
&Callback=input The user manipulates an input object
&Callback=create The Plug-In instance connected to the DATASINK is created
&Callback=destroy The Plug-In instance connected to the DATASINK is terminated

The following three sections explain the format of the query string for each type of input notification.
The User Clicks on an Object in a View
The User Manipulates an Input Object

The Plug-In Instance is Created or Destroyed

The User Clicks on an Object in a View
If you left-click on a named object, the Plug-In generates a query string that looks like this:
Src=http://ithaca:8080/views/top.dvweb
&Name=My+View
&Id=0x11212312
&Callback=select
&ObjectName=name1
&Button=Left

The Name field in the above example is the Plug-In instance name, which is set by the NAME attribute
of the <EMBED> command. The ObjectName field is the name of the object within the view that the
user selected. The DATASINK is not notified of clicks on unnamed objects.
Notice that the space in the instance name is replaced with a "+". This means that the text is “URL
encoded.” There are serveral rules for URL encoding a text string. For more information, see your
server documentation. There are also several freely available packages for parsing information that is
sent to a CGI program this way. These libraries make working with CGI input and output much easier.

The User Manipulates an Input Object
Input notifications are more complicated than click notifications, because there is a variety of different
input object types each sending different values. Common to all of these are a object name field (as in
the click case, above) and an action field that describes what action the user performed. The action is
INPUT_ACCEPT, INPUT_DONE, or INPUT_CANCEL. These actions correspond to the definitions
given in the DV-Tools manuals for input objects.
After the action comes the new value(s) for the input object. The value is always preceded by an
identifier of the form Valuen= where n is a value from 1 to the number of values associated with this
type of input object. The following examples show the new value commands for various kinds of input
objects.
The new value from a Text Editor input object is a single URL-encoded string. For example:
Src=http://ithaca:8080/views/top.dvweb
&Name=My+View
&Id=0x11212312
&Callback=input
&ObjectName=name1
&Action=INPUT_DONE
&Value1=New+Text+Here

New values from a 2D-Slider are two floats. For example:
...
&Value1=0.5
&Value2=0.78

New values from a Checklist are expressed as a float for each element of the Checklist. For example:
...
&Value1=0.0
&Value2=1.0
&Value3=0.0
.
.
.

The new value from a Button input object, Slider, or Toggle, is a single float. For example:
...
&Value1=0.0

The Plug-In Instance is Created or Destroyed
A query string contains a Callback value of create when the instance is first created, and a Callback
value of destroy when the instance is destroyed.
This is an example of a query string resulting from instance creation:
Src=http://ithaca:8080/views/top.dvweb
&Name=My+View
&Id=0x11212312
&Callback=create

This is an example of a query string resulting from instance destruction:
Src=http://ithaca:8080/views/top.dvweb
&Name=My+View
&Id=0x11212312
&Callback=destroy

As stated in the DATAINIT Attribute section, when a destroy is sent to the data sink, you can write out a
data initialization text file with commands to restore the Plug-In to its previous state. This way, if the
user moves away from a page containing a DataViews View then goes back to it, the view appears to
pick up where it left off rather than restarting.
See the Data Sink example in the <DVHOME>\plugin\examples\automobile\ directory for a working
example. Note that to run the example, you must transfer and compile the autosink.c data sink
program to the CGI directory on your server. For detailed information, see the README file in the
<DVHOME>\plugin\examples\automobile\ directory.

Debugging Your Data Sink
Normally, the text commands from your data sink get fed directly to the Plug-In instance that called the
data sink. This makes it difficult to see whether the output is what you intended. To debug data sink
output, you can use the TARGET attribute of the <EMBED> command. This attribute, when defined,
redirects data sink output to a named window or frame. This allows you to see the output from your
data sink program.
Typical TARGET statements are:
TARGET="_current"Displays data sink output in the current Netscape window.
TARGET="_blank" Displays data sink output in a new Netscape window.
In addition to this attribute, most web servers contain a utility data sink whose output is the query string
that was sent to it. For NCSA servers, this utility is called post-query. You can easily create your own if
your server does not supply one. So, to see the query strings being sent to your data sink, you can set
the TARGET to a named window, such as _blank, and set the DATASINK attribute to the post_query
program.

Appendix A: DataViews PlugIn Attributes
The Plug-In, through the HTML <EMBED> command, understands the following attributes. Note that
the only required attributes are SRC, WIDTH, and HEIGHT.
Properly formed HTML strings have double quotation marks around them. So, for attributes that require
a string argument, uses double quotes. This restriction does not apply to TRUE/FALSE values since
these are considered Boolean values, not string values. For example:
DATASINK="http://myserver/dsink.exe" Properly formatted string value.
ALWAYSREQUESTFILE=TRUE Properly formatted Boolean value.

· ADDTODVPATH
This is a semicolon-delimited list of paths to append to the DV-Tools search path. If a file
that the view needs is supposed to be found on the client rather than on the server, you
may need to set this attribute to ensure that the Plug-In looks in the appropriate
directories. Note that all Plug-In instances share the same DVPATH information, so
changing this value may affect other Plug-Ins.

· ALWAYSREQUESTFILE
If set to TRUE, any embedded pixmap, subdrawing, and file data source files are always
requested from the server even if a local copy is available. If it is set to FALSE (the
default), and if the file was found locally (by using the ordinary DV-Tools search paths),
the local copy is used instead.

· AUTOREADDATA
If set to TRUE, every time the Plug-In automatically updates, it also performs a
TviReadData() . The default is FALSE. Must be set to TRUE for the view to use function
data sources.

· DATAINIT
Initializes the view displayed by the Plug-In instance. DATAINIT commands are the same
as DATASOURCE commands. However, all commands are run before the view is
displayed.

· DATASINK
Specifies a CGI program to receive user input from controls or objects in the Plug-In
drawing and acts on that input.

· DATASOURCE
This is the URL of a source of animation commands. Animation commands are generally
contained in a CGI program on the server but can be supplied in a text file.

· DEBUGTRACE
Turns on debug messages if TRUE. The default is FALSE. Saves messages to the file
associated with DEBUGTRACEFILE .

You can use the environment variable DV_DEBUGTRACE to globally turn on the debug
trace. This might be easier than adding the attribute to each instance you want to debug.

See also: DEBUGTRACEFILE

· DEBUGTRACEFILE     
File to save DEBUGTRACE information. Note that this file grows rapidly. Also, if this
attribute is set, but DEBUGTRACE is FALSE, a zero length DEBUGTRACEFILE is
created.

You can use the environment variable DV_DEBUGTRACEFILE to globally set the debug
trace file. This might be easier than adding the attribute to each instance    you want to

debug.

See also: DEBUGTRACE

· DISPLAYDVCOPYRIGHT
Determines whether to display or suppress the DataViews copyright screen that ordinarily
appears before a view is loaded. The default is TRUE.

· ENABLEINPUTCALLBACKS
If set to TRUE (the default), and if a data sink has been provided, the data sink is notified
whenever the user manipulates a named input object. The data sink is informed of the
name of the input object, the action performed (DONE, CANCEL, ACCEPT, etc.) and the
value(s) of the input object's vdp(s).

· ENABLESELECTIONCALLBACKS
If set to TRUE (the default), and if a data sink has been provided, the data sink is notified
whenever the user clicks on a named object. An exception is if the name looks like an
HREF, in which case that HREF is requested from the net. The data sink is notified of the
name of the object clicked on as well as the mouse button used.

· HEIGHT/WIDTH
The dimensions of the instance if it is embedded into an HTML page. These can be either
an integer, meaning the size is that number of pixels, or an integer followed by a percent
sign "%", meaning the dimension is that percent of the Navigator window. The SRC ,
HEIGHT and WIDTH attributes are the only required attributes.

· INITIALLYPAUSED
If this is set to TRUE, the Plug-In does not start automatic updating until it receives an
explicit resume command from the DATASOURCE . The default is FALSE.

· INITIALLYVISIBLE
If this is set to TRUE, the top level view is visible as soon as it has been loaded,
regardless of whether there is a DATAINIT stream. If set to FALSE, the view is hidden
until the DATAINIT is complete.

· NAME
Names the Plug-In instance. The value of this attribute is used in conjunction with the tell
Plug-In command. When an instance is named, commands can be sent to it from other
instances.

· OPENDATASOURCES
If set to TRUE, view data sources are opened before the initial draw. The default is
FALSE. This must be set to TRUE for the view to use file or function data sources.

· PERIOD
Determines the period for automatic updating, measured in milliseconds. A value of 0
means that the Plug-In does not periodically update. The default is 100.

· SERVERPATH
This is a path to search for views, subdrawing, or text-based data source and data
initialization scripts on the server. Only one path is allowed.

· SRC
The URL of the view to display in the Plug-In instance. This is referred to as the top-level
view.

· STRETCH

If TRUE, the drawport (rectangle in the browser screen) is created with
TdpCreateStretch() ; otherwise TdpCreate() is used.

· TARGET
Specifies a target for data returned by a DATASINK . Normally, this attribute is not set,
which results in the DATASINK output being sent directly to the Plug-In for processing as
a command stream. However, to observe the output of the DATASINK for testing and
debugging purposes, you can set TARGET to _current or _blank or any other named
frame or window. _current places the output in the current window, while _blank displays
the output in a new window.

Appendix B: Troubleshooting / FAQ
This appendix contains remedies for common problems using the Plug-In.

· My View will not Load in the Browser Window.

· I changed my view on the server, reloaded, and it did not change. I then cleared Netscape's
memory and disk caches, I still don't see the change.

· When I Run My View With a Data Sink and a Debug Trace File, the File Contains Errors from the
Data Sink, but Everything Works Fine.

My View will not Load in the Browser Window.
If you cannot load a view into a browser window, consider the following possibilities:

· Did you choose a view file with a .dvv or .dvweb extension? If not, change the extension and
try again.

· Are both DataViews and the DataViews Plug-In properly licensed? If you have not
authorized each product, the Plug-In will not work.

· Did you load a binary view file from a different operating system into the Plug-In? If so, you
only see the copyright screen.

I changed my view on the server, reloaded, and it did not change. I then
cleared Netscape's memory and disk caches, I still don't see the change.

Most Web servers cache frequently accessed files independently of Netscape. You are probably
seeing a version of your view that was cached at the server. There are two ways for the Web developer
to avoid server caching problems:

· Create Web pages locally.
This way, choosing "reload" always gives you the most current version of the file. This is
not practical when developing Plug-In views with CGI data sources or data sinks since
you need a server to test them.

· Run your own local Web server.
This gives you complete control of the client-server testing environment. For example,
you could guarantee seeing changes to views by turning off server file caching and
Netscape file caching.

When I Run My View With a Data Sink and a Debug Trace File, the File
Contains Errors from the Data Sink, but Everything Works Fine.

There might be a case where your data sink does not return any output to the Plug-In. If you send an
empty header back to the Plug-In, this type of error does not occur.

Appendix C: Setup for Common Web Servers
For complete information about setting up your web server to serve DataViews views, Consult your
web server documentation.. This Appendix contains summaries of how to set up some of the most
common web servers.
Apache and NCSA Web Servers
CERN Web Server
Netscape Web Server
Microsoft Web Server

Apache and NCSA Web Servers
CERN Web Server      Netscape Web Server      Microsoft Web Server

The Apache server is meant to be a drop-in replacement for the NCSA server, so the following steps
are the same for both servers.

· Make sure you have the necessary permissions to edit the Apache or NCSA server
configuration files. In some cases you may need to be the user who installed the Apache or
NCSA server on your system.

· Change directories to <server_home>/httpd/conf .
· Edit the file mime.types.
· Add the following entry somewhere in this file:

 text/x-dvweb dvv dvweb v
· Save the file.
· Restart the server. One way to restart the server is by executing the following command:

 kill -HUP pid
where pid represents the process id of the Apache web server.

You have now registered the appropriate MIME types for viewing DataViews views on the Apache or
NCSA web servers.

CERN Web Server
Apache and NCSA Web Servers      Netscape Web Server      Microsoft Web Server

To register the DataViews MIME type on your CERN server, use the following procedure:
· Make sure you are planning to make this change as a user with the necessary permissions

to edit the CERN server configuration file. In some cases you may need to be the user who
installed the CERN server on your system.

· The CERN server typically works with a single configuration file, which is /etc/httpd.conf by
default, although you may elect to have your configuration file somewhere other than /etc. In
the steps below, we assume your configuration file is under /etc. If it is not, simply replace
/etc with the path to your appropriate configuration file.

· Edit the following file:
 /etc/httpd.conf

· Add the following lines to the end of the config file:
 AddType .dvv text/x-dvweb
 AddType .dvweb text/x-dvweb
 AddType .v text/x-dvweb
· Save the file.
· Restart the server. This can be done by either executing

 kill -HUP p_id
where p_id represents the process id of the running CERN server, or you can restart the
server by executing the following command:

 httpd -r /etc/httpd.conf -restart

Remember, the httpd.conf must be preceeded by the correct absolute pathname on your system to
your configuation file.
You have now registered the appropriate MIME types for viewing DataView views on the CERN web
server.

Netscape Web Server
Apache and NCSA Web Servers      CERN Web Server      Microsoft Web Server

To register the DataViews MIME type on your Netscape server, use the following procedure:
· Make sure you are planning to make this change as a user with the necessary permissions

to edit the Netscape server configuration files. In some cases you may need to be the user
who installed the Netscape server on your system.

· Change directories to your <netscape_home>/httpd-80/config directory.
· Edit the following file:

 mime.types
Add the following entry somewhere in this file:
 type=text/x-dvweb exts=dvv dvweb v

· Save the file.
· Restart the server. One way to restart the server is by running the restart program, which is

found under <netscape_home>/httpd-80/.
You have now registered the appropriate MIME types for viewing DataViews views on the Netscape
web server.

Microsoft Web Server
Apache and NCSA Web Servers      CERN Web Server      Netscape Web Server

To register the DataViews MIME type on your Microsoft server, use the following procedure:

· Start Regedit.exe and open
 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
 Inetinfo\Parameters\MimeMap

· Click on "MimeMap."
· Click on "Edit value."
· Enter the following value for the MIME mapping:

 text/x-dvweb,dvv,,0
Repeat the "Edit Value" process to add:

 text/x-dvweb,dvweb,,0
 text/x-dvweb,v,,0

· Restart the server.
You have now registered the appropriate MIME types for viewing DataViews views on the Microsoft
web server.

